GCSE MARKING SCHEME

SUMMER 2022

GCSE
SCIENCE (DOUBLE AWARD) - UNIT 3 HIGHER TIER
3430UC0-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCSE SCIENCE (DOUBLE AWARD) - UNIT 3 - PHYSICS 1

HIGHER TIER

SUMMER 2022 MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.
One tick must equate to one mark (apart from the questions where a level of response mark scheme is applied).
Question totals should be written in the box at the end of the question.
Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Marking rules

All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.
Crossed out responses not replaced should be marked.
Credit will be given for correct and relevant alternative responses which are not recorded in the mark scheme.
Extended response question
A level of response mark scheme is used. Before applying the mark scheme please read through the whole answer from start to finish. Firstly, decide which level descriptor matches best with the candidate's response: remember that you should be considering the overall quality of the response. Then decide which mark to award within the level. Award the higher mark in the level if there is a good match with both the content statements and the communication statement.

Marking abbreviations
The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao	$=$ correct answer only
ecf	$=$ error carried forward
bod	$=$ benefit of doubt

Question			Marking details	Marks Available						
			A01	AO2	AO3	Total	Maths	Prac		
1.	(a)			Variable resistor added in series with lamp (1) accept any size box with an arrow through it Voltmeter added in parallel with lamp (1)	2			2		2
	(b)	(i)	When current is $0.5[\mathrm{~A}]$ the voltage is $0.9 \pm 0.1[\mathrm{~V}]$ (1) When current is $1[\mathrm{~A}]$ the voltage is 2.4 ± 0.1 [V (1) Triple would give 2.7 [V] or this is not triple (1) so not true To award 3 marks conclusion must be present Alternative 1: When the current doubles from 0.5 to 1 [A] (1) The voltage changes from 0.9 to 2.4 [V] (1) which is 2.7 times bigger or this is not triple (1) so not true To award 3 marks conclusion must be present Alternative 2: When current is $1[\mathrm{~A}]$ the voltage is 2.4 ± 0.1 [V] (1) When current is $2[\mathrm{~A}]$ the voltage is $8.4 \pm 0.1[\mathrm{~V}]$ (1) Triple would give 7.2 [V] or which is 3.5 times bigger or this is not triple (1) so not true To award 3 marks conclusion must be present Alternative 3: When the current doubles from 1 to $2[\mathrm{~A}]$ (1) The voltage changes from 2.4 to 8.4 [V] (1) which is 3.5 times bigger or this is not triple (1) so not true To award 3 marks conclusion must be present			3	3		3	

Question		Marking details	Marks Available						
		A01	AO2	AO3	Total	Maths	Prac		
			N.B. 1 When current is 0.5 [A] the voltage is $0.8[\mathrm{~V}]$ (1) When current is $1[\mathrm{~A}]$ the voltage is $2.4[\mathrm{~V}]$ (1) This is 3 times bigger or this is triple (1) so true To award 3 marks conclusion must be present N.B. 2 When voltage triples from $2[\mathrm{~V}]$ to $6[\mathrm{~V}]$ (1) Current changes from $0.9[\mathrm{~A}]$ to $1.7[\mathrm{~A}]$ (1) This is not double (1) so not true To earn credit voltages must be withing the range of 0.9 V to 8.4 V N.B. 3 A correct conclusion based on incorrect voltage readings taken from the graph award 1 mark.						
	(ii)	Voltage $=12[\mathrm{~V}]$ (1) Current $=2.25 \pm 0.05[\mathrm{~A}]$ (1) both readings from graph Power = 27 [W] or $26.4[\mathrm{~W}]$ or $27.6[\mathrm{~W}]$ (1)		3		3	3	3	
(c)	(i)	Substitution: $\frac{12}{6}$ (1) $=2[\mathrm{~A}]$ (1)	1	1		2	2	2	
	(ii)	Straight line from origin through (12,2 ecf)		1		1	1	1	

Question		Marking details	Marks Available						
		AO1	AO2	AO3	Total	Maths	Prac		
(d)	(i)		Connect in series one way and see if lamp lights or the resistance will be low or current will be high (1) Reverse the cell / battery / + and - / connection / box (1) See if the lamp still lights or the resistance will be much higher or diode only lets current flow one way or current will be zero (very small) (1) Alternative: Replace lamp with sealed box / add in series [with lamp] (1) Vary R and take series of reading of current and voltage (1) Reverse box / polarity of cell and repeat step 2 (1)			3	3		3
	(ii)	 Don't accept S shapes or curve with a decreasing gradient	1			1		1	
		Question 1 total	4	5	6	15	6	15	

Question			Marking details	Marks Available						
			A01	AO2	AO3	Total	Maths	Prac		
2.	(a)	(i)		Wavelength $=6[\mathrm{~cm}]$		1		1	1	
		(ii)	Conversion to $\mathrm{m}=0.06 \mathrm{~m}$ (1) Substitution and manipulation: $f=\frac{3 \times 10^{8}}{0.06 \mathrm{ecf}}$ $\begin{equation*} f=5 \times 10^{9}[\mathrm{~Hz}](1) \tag{1} \end{equation*}$ Award 2 marks If no conversion, answer of $f=5 \times 10^{7}[\mathrm{~Hz}]$ Award 2 marks for answers of 5×10^{n} where n is not 9		3		3	3		
	(b)		Wavefronts perpendicular to direction (1) Longer wavelengths (1) 3 or more wavefronts joined at boundary (1) To earn any credit wavefronts must be travelling towards the top right corner Examples		3		3			

(space

Question			Marking details	Marks Available						
			A01	AO2	AO3	Total	Maths	Prac		
3.	(a)			The live wire carries current [to an appliance] at a high voltage (1) The neutral wire [completes the circuit and] carries current at low I zero voltage (1) Earth wire is for protection (or prevents shocks or electrocution) [if live wire touches the metal casing of an appliance] or provides a [low resistance] path to ground or takes current away from appliance when a fault occurs (1)	3			3		
	(b)		mcb trip if a current is too large (1) rccb trips when imbalance in current between the live and neutral wires (1) mcb protect the circuit or rccb protects people (1) Accept mcb prevents overheating or protects the appliance. rccb prevents electric shocks	3			3			
			Question 3 total	6	0	0	6	0	0	

Question			Marking details	Marks Available						
			A01	AO2	AO3	Total	Maths	Prac		
4.	(a)			Any $3 \times(1)$ from: Particles vibrate (1) More or faster (1) collide with neighbours or pass on energy to neighbours (1) Free electrons (1) [free] electrons increase in kinetic energy or move faster (1) Electrons pass on the energy as they move through the lattice or electrons collide with the lattice owtte (1)	3			3		
	(b)		Any $2 \times(1)$ from: Convection [currents] (1) Heated liquid rises [from solar panel] (1) Hot liquids are less dense (1) Accept cold liquids fall (1) and cold liquids are more dense (1)		2		2			
	(c)		$\begin{aligned} & 960 \times 2=1920(1) \\ & 1920(\text { ecf }) \times \frac{1}{3}=640[\mathrm{~J}](1) \end{aligned}$ Alternative: $\begin{aligned} & \frac{960}{3}=320(1) \\ & 320 \text { ecf } \times 2=640[\mathrm{~J}](1) \end{aligned}$ Award 1 mark for answer of 576 [J]		2		2	2		
			Question 4 total	3	4	0	7	2	0	

Question			Marking details	Marks Available						
			AO1	AO2	AO3	Total	Maths	Prac		
6.	(a)	(i)		Reduction in units $=15000-3000=12000[\mathrm{kWh}](1)$ Reduction in cost $=12000$ ecf $\times 20=240000[\mathrm{p}]$ (1) Conversion to $£=[£] 2400$ (1) Alternative: $\begin{aligned} & 15000 \times 20=300000[p](1) \\ & 3000 \times 20=60000[p](1) \\ & \text { Saving }=3000 \text { ecf }-600 \text { ecf }=[£] 2400 \end{aligned}$ Award 2 marks for answers of 2.4×10^{n} where n is not 3		3		3	3	
		(ii)	$\text { Payback time }=\frac{152400}{2400 \text { ecf }}=63.5 \text { [months] accept } 64 \text { [months] }$		1		1	1		
	(b)	(i)	Selection and substitution into efficiency equation: $\begin{aligned} & \frac{1.9}{5.3}(1)[\times 100](1) \\ & \% \text { efficiency }=35.849 \text { or } 35.8 \text { or } 35.85 \text { or } 36 \text { or } 40(1) \\ & \text { Award } 1 \text { mark for } 0.36 \text { or } 0.4 \end{aligned}$		2		2	2		
		(ii)	Weekly mass of dung $=150 \times 60=9000[\mathrm{~kg} /$ week] (1) Weekly volume of gas $=9000(e c f) \times 0.05=450\left[\mathrm{~m}^{3}\right]$ (1) Weekly number of $\mathrm{kWh}=450(e c f) \times 1.9=855[\mathrm{kWh}](1)$ Annual number of $\mathrm{kWh}=855(\mathrm{ecf}) \times 52$ (1) $=44460$ (ecf) [kWh] [so farmer is incorrect] (1)			5	5	5		

HIGHER TIER

SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	AO1	AO2	AO3	TOTAL MARK	MATHS	PRAC
1	4	5	6	$\mathbf{1 5}$	6	15
2	3	9	1	$\mathbf{1 3}$	7	0
3	6	0	0	$\mathbf{6}$	0	0
4	3	4	0	$\mathbf{7}$	2	0
5	6	0	0	$\mathbf{6}$	0	0
6	2	6	5	$\mathbf{1 3}$	11	0
TOTAL	$\mathbf{2 4}$	$\mathbf{2 4}$	$\mathbf{1 2}$	$\mathbf{6 0}$	$\mathbf{2 6}$	$\mathbf{1 5}$

